1) тогда и только тогда, когда точки ,
2) тогда и только тогда, когда точки .
3. Теоремы о сложном отношении точек и прямых
Теорема 1.
При любом проективном преобразовании плоскости сложное отношение четырех точек прямой сохраняется.
Доказательство. Пусть – проективное преобразование плоскости , прямая , ; точки переходят в отображении в точки . Как мы знаем, сужение есть проективное отображение . Это отображение вполне определяется упорядоченной парой реперов , где , . Если – координаты точки в репере , то эти же координаты имеет точка в репере . Но , . Теорема доказана.
Следствие. При любом проективном отображении одной прямой на другую сложное отношение четырех точек сохраняется.
Теорема 2.
Если биекция сохраняет сложное отношение любой четверки точек, то – проективное отображение.
Доказательство. Пусть – различные точки прямой и их образы в отображении . Существует единственной проективное отображение , которое переводит точки в точки соответственно.
Если , и , то по доказанному
.(3)
Если , то по условию
(4)
(3), (4)
и, значит, точки и совпадают. Так как , то такой вывод справедлив для любой точки . Следовательно, данное нам отображение совпадает с проективным отображением . Теорема доказана.
История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...
Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.