, , , . (*)
Где , ,,. Поскольку, сложное отношение точек не зависит от выбора репера, то в качестве репера можно выбрать репер , тогда будут являться аффинными координатами на данной прямой.
Найдем простое отношение (используя определение простого отношения): , .
Найдем сложное отношение по формуле (1), используя координаты (*):
.
Замечание 1. Несобственная точка делит любой отрезок прямой в отношении , то есть .
Замечание 2. Если выбрать в качестве репера , то в этом репере точка будет иметь координаты: . Зная сложное отношение точек , всегда можно найти расположение точки на прямой. В этом случае .
Значит, если , то .
2. Свойства сложного отношения четырех точек
10:
Сложное отношение точек не изменится, если поменять местами пару точек: .
Доказательство: , . Учитывая, что получим, что . Свойство доказано.
20:
Сложное отношение точек меняет свое значение на обратное, при перестановке точек внутри одной пары: .
Доказательство: , . Свойство доказано.
30:
Если поменять местами точки внутри каждой пары, то сложное отношение не изменится: .
Доказательство: следует из свойства 20. . Свойство доказано.
40:
.
Доказательства первого, второго и третьего свойства предложить студентам на самостоятельное изучение.
Замечание. Пусть на прямой заданы точки , тогда
История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...
Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.