Как видим, на втором уроке учитель для разъяснения смысла сложения сначала воспользовался графической моделью, затем перешел к предметной, далее к словесной (дети описали, что они видят на картинке) и после этого познакомил их с символической моделью (выражение, равенство).
Аналогично, ориентируясь на страницу учебника, можно построить урок при знакомстве детей с вычитанием.
Таким образом, решение простых задач заменяется различными упражнениями (учебными заданиями), в процессе выполнения которых дети усваивают конкретный смысл действий сложение и вычитание. Приведем такие упражнения: (тетрадь с печатной основой № 1) № 63, 64–67, 68, 70, 79.
Для разъяснения понятия «разностное сравнение» – «На сколько больше? На сколько меньше?» – особое значение имеет выбор предметной модели. Дело в том, что если в качестве предметной модели используется рисунок, на котором предметы расположены друг под другом, то детям довольно трудно осознать, что ответ на вопрос «На сколько больше (меньше)?» связан с выполнением действия вычитание. Если же ребенок не осознает этой связи, а только запомнит правило: «Чтобы узнать, на сколько одно число больше другого, надо из большего числа вычесть меньшее», – то при решении задач он будет ориентироваться только на внешний признак, а именно на слово «на сколько».
В качестве примера можно привести такую задачу: «На остановке из автобуса вышли 3 девочки и 7 мальчиков. На сколько человек в автобусе стало меньше?» (До 50% детей решают задачу вычитанием.)
Не представляя предметного смысла разностного сравнения, многие дети, отвечая на вопрос «На сколько меньше?», выбирают вычитание. А для ответа на вопрос «На сколько больше?» выбирают сложение.
Приведем примеры заданий, в процессе выполнения которых дети усваивают предметный смысл разностного сравнения: № 261, 267 (учебник для 1-го класса), № 18, 19, 24 (тетрадь с печатной основой № 2, 1-й класс).
Для формирования у детей умения представлять ситуацию, описанную словами, предлагаются задания на соотнесение вербальных и предметных моделей: № 393, 402 (учебник для 1-го класса).
В I четверти 2-го класса учащиеся знакомятся со схемой: № 41, 42, 49, 58 (учебник для 2-го класса).
Второй этап
Для формирования умения читать текст задачи (выделять условие, вопрос, известные, неизвестные), анализировать его с точки зрения математических понятий и отношений, устанавливать взаимосвязь между условием и вопросом используются различные методические приемы.
К решению задач учащиеся приступают во II четверти 2-го класса.
1) Сравнение текстов задач, выявление их сходства и различия:№ 131, 132,138, 149 (учебник для 2-го класса).
2) Составление задач по данным условиям и вопросу: № 35 (а), 36 (а) (тетрадь «Учимся решать задачи», 1–2-й классы).
3) Перевод словесной модели задачи или ее условия в схематическую модель: № 41 (а), 43 (а) (тетрадь «Учимся решать задачи», 1–2-й классы).
4) Выбор схемы № 44 (а) (тетрадь «Учимся решать задачи», 1–2-й классы).
5) Завершение начатой схемы, соответствующей данной задаче: № 49 (а), 59 (а), (б) (тетрадь «Учимся решать задачи», 1–2-й классы).
6) Объяснение выражений, составленных по условию задачи: № 179 (учебник для 2-го класса).
7) Выбор вопросов, соответствующих данному условию: № 191; на которые можно ответить, пользуясь данным условием: № 222 (учебник для 2-го класса).
8) Выбор условий, соответствующих данному вопросу: № 230 (учебник для 2-го класса).
9) Дополнение текста задачи в соответствии с данным решением: № 65 (тетрадь «Учимся решать задачи»).
10) Дополнение текста задачи в соответствии с данной схемой: № 42 (а), (б), № 72 (а), (б).
11) Выбор задачи, соответствующей данной схеме: № 77.
12) Выбор решения данной задачи: № 37 (тетрадь).
13) Постановка к данному условию различных вопросов и запись выражения, соответствующего каждому вопросу: № 34 (тетрадь).
14) Обозначение на схеме известных и неизвестных в задаче величин: № 51 (а), (б), 69 (а), (б) (тетрадь).
Для проверки сформированности умения решать задачи учитель предлагает детям самостоятельно записать решение различных задач. Если у детей возникают затруднения, то учитель может использовать любые сочетания методических приемов в зависимости от содержания задачи.
Уроки математики
2-й класс
Тема. «Решение задач»
Цель. Формирование умений анализировать текст задачи и интерпретировать его на схематической модели (перевод вербальной модели в схематическую).
Учитель. Мы продолжаем сегодня на уроке учиться решать задачи. В этом нам помогут задания из тетради «Учимся решать задачи»1. Откройте задание № 48. Прочитайте задание (а) про себя, затем вслух.
История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...
Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.