Рассматривая текстовую задачу как словесную модель ситуации (явления, события, процесса), а ее решение – как перевод словесной модели в символическую (математическую) – выражение, равенство, уравнение и т.д., целесообразно до решения текстовых задач создать учащимся условия для приобретения опыта в интерпретации той или иной ситуации на различных моделях. Средством создания этих условий может являться методика формирования у учащихся представлений о смысле арифметических действий, в основе которой лежит установление соответствия между словесными (вербальными), предметными, графическими (схематическими) и символическими моделями. Овладев этими умениями до решения текстовых задач, учащиеся смогут использовать приемы моделирования как общий способ деятельности, а не как частный прием для решения той или иной конкретной задачи.
Данный методический подход к обучению младших школьников решению текстовых задач является ответом на вопрос, как научить младших школьников решать текстовые задачи.
Этот подход можно представить в виде двух этапов.
I этап – подготовительный. На нем младшие школьники овладевают навыками чтения; приемами умственной деятельности (анализа и синтеза, сравнения, классификации, аналогии, обобщения); усваивают смысл основных математических понятий: «сложение», «увеличить на», «вычитание», «уменьшить на», «разностное сравнение»; учатся использовать отрезки как средство моделирования этих понятий, овладевают умением складывать и вычитать отрезки, знакомятся со схемой.
II этап – основной. На нем учащиеся знакомятся со структурой задачи (условие, вопрос, известные, неизвестные), учатся анализировать ее текст (здесь уже не имеет значения, простая это задача или составная), переводить словесную модель в схематическую и (или) в символическую и овладевают умением записывать решение и ответ задачи.
Рассмотрим более подробно организацию деятельности учащихся на каждом этапе.
Так как предлагаемая методика обучения решению задач реализуется в курсе, направленном на систематическое формирование у детей приемов умственной деятельности, то работа в этом направлении осуществляется при изучении каждой темы, на каждом уроке математики, в каждом учебном задании, в процессе выполнения которых дети усваивают математическое содержание программы.
Безусловно, формирование навыков чтения не является основной задачей курса математики, поэтому словесные формулировки, сопровождающие в учебнике каждое задание, не следует рассматривать как материал для упражнений в чтении. Использование различных формулировок заданий позволяет детям осознать тот факт, что прежде, чем выполнять задание, его необходимо внимательно прочитать и понять. Тем самым учащиеся приучаются внимательно читать словесную инструкцию и анализировать условия выполнения предложенного задания. Этот навык является очень важным для решения задач.
Для разъяснения смысла арифметических действий используется способ соотнесения различных моделей: предметной, вербальной, графической и символической. Покажем, как можно организовать такую деятельность учащихся на конкретном уроке по теме «Сложение».
Первый вариант урока
Учитель. Прочитайте слово, которое написано наверху страницы.
Дети. Сложение.
У. Может быть, кто-нибудь знает, что означает это слово?
Д. Это плюс, это прибавить. У зайчика одна морковка, а у белочки 3. Всего у них 4 морковки. Это сложение.
Помимо этих ответов, были и другие, но они в меньшей степени относились к содержанию этого понятия.
У. Сегодня на уроке мы постараемся разобраться, что же такое сложение. Кто может прочитать задание? (№ 152). Расскажи, что делают Миша и Маша?
арифметический вычислительный навык школьник
Д. Миша и Маша запускают рыбок в один аквариум, они сажают рыбок вместе. Маша запускает в аквариум трех рыбок, а Миша двух; рыбки будут плавать вместе и т.д.
Обратите внимание, сколько важных и нужных слов, характеризующих смысл действия «сложение», произнесли дети. При этом, заметьте, им не давалось никакого образца. Каждый из них работал на своем уровне и использовал только те слова, которые ему были понятны.
У. Я попробую изобразить на доске то, что нарисовано на картинке.
Учитель выкладывает на фланелеграфе трех рыбок.
– Все ли правильно я сделала?
Д. Вы показали рыбок только Маши, надо еще добавить рыбок Миши. У него две рыбки.
Учитель выкладывает на фланелеграфе еще двух рыбок.
Аналогичная работа проводится с верхней правой картинкой, которая дана в учебнике. Миша ставит в вазу четыре тюльпана, а Маша пять васильков. Они объединяют цветы вместе в одной вазе.
История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...
Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.