Специфические приемы познавательной деятельности

Новое об образовании » Познавательная сфера младших школьников » Специфические приемы познавательной деятельности

Страница 4

Работа с отстающими учениками III класса показала, что ни одно из указанных понятий ими не усвоено. Ученики не понимают и отношений, существующих между этими понятиями.

На вопросы, касающиеся скорости, ученики давали ответы такого типа: «Скорость у машины имеется, когда она идет». На вопрос, как можно узнать скорость, учащиеся отвечали: «Не проходили», «Нас не учили». Некоторые предлагали путь умножить на время. Задачу: «За 30 дней была построена дорога длиной 10 км. Как узнать, сколько километров строилось за 1 день?» – ни один из учащихся не смог решить.

Процесс решения шел хаотично: «Умножим 30 на 10… Или вначале прибавим». Не владели учащиеся понятием «время процесса»: они не дифференцировали таких понятий, как момент начала, допустим, движения и время движения. Если в задаче говорилось, что поезд вышел из какого-то пункта в 6 часов утра, то учащиеся принимали это за время движения поезда и при нахождении пути скорость умножали на 6 часов. Оказалось, что испытуемые не понимают и отношений между скоростью процесса, временем и продуктом (пройденным путем, например), к которому этот процесс приводит. Никто из учащихся не смог сказать, что ему надо знать, чтобы ответить на вопрос задачи. (Даже те ученики, которые справляются с решением задач, не всегда умеют ответить на этот вопрос.) Значит, для учащихся величины, содержащиеся в условии и в вопросе задачи, не выступают как система, где эти величины связаны определенными отношениями. А именно понимание этих отношений и дает возможность сделать правильный выбор арифметического действия. Все сказанное приводит нас к выводу: трудности в решении арифметических задач часто лежат за пределами арифметики как таковой. Главным условием, обеспечивающим успешное решение арифметических задач, является понимание учениками той ситуации, которая описана в задаче. Отсюда следует, что при изучении арифметических задач необходимо формировать приемы анализа таких ситуаций, которые являются не арифметическими, а физическими, экономическими и т.д. В школе этого обычно не делают, поэтому многие ученики и затрудняются в решении арифметических задач.

Важно также отметить, что приемы решения задач должны формироваться по возможности в обобщенном виде.

Так, в арифметике существует более 30 разновидностей задач, связанных с различными процессами. Большинство из них в школе усваивается как самостоятельные типы. Особенности ситуации, описанной в задаче, определяют способ ее решения.

Элементы ситуации можно выделить в том частном виде, в каком они описаны в той или иной задаче: корм, израсходованный за день; путь, пройденный пешеходом за час; вода, вытекающая в течение минуты, и т.д. Но эти же элементы могут быть сразу рассмотрены как частные проявления более общих величин и их отношений, характерных для любого процесса: каждая конкретная задача данного типа связана с протеканием какого-то частного процесса. Следовательно, учеников надо научить видеть в ней то, что характеризует любой процесс: действующие силы, скорость процесса (V), время протекания его (Т) и результат, продукт, к которому приводит этот процесс или который он уничтожает (5). В этом случае все названные задачи выступают перед учениками всего лишь как варианты задач на процессы. Умение решать эти задачи предполагает усвоение определенной системы понятий – скорость, время, продукт процесса, а также отношений между ними.

После этого ученикам может быть дан общий метод анализа условий задачи на языке процессов, составления схемы ситуации и плана решения. В любой задаче на процессы ученик выделяет теперь действующие силы, характер их взаимодействия (помогают или противодействуют друг другу), скорость их действия и т.д. В результате учащиеся овладевают умением видеть за разнообразием сюжетов, описанных в задачах, одну и ту же сущность: величины, характеризующие процесс, и их отношения.

Следующий шаг – научить находить одни величины через другие в общей же форме. В частности, при одной действующей силе любая величина из трех основных (V, Т, 8) может быть найдена при наличии двух остальных. Допустим, решается задача, где искомым является количество деталей, которые изготовляют три бригады за час. Учащиеся обозначают это как общую скорость процесса (У0). Затем они в общей же форме находят величины, с помощью которых это искомое можно получить. Ученики после усвоения основных элементов и их отношений знают, что УО может быть получена только двумя путями: или через общее время (Т0) и общий продукт (50), или через скорости отдельных участников. И они изображают следующее:

Страницы: 1 2 3 4 5 6

Другое по педагогике:

История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...

Роль авторитета учителя

Роль авторитета учителя в учебном процессе

Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.

Категории

Copyright © 2024 - All Rights Reserved - www.listeducation.ru