Но еще проще ознакомить детей с правилом — «чтобы умножить число на 9 (99, 999)достаточно вычесть из этого числа число его десятков (сотен, тысяч), увеличенное на единицу, и к полученной разности приписать дополнение его цифры единиц до 10 (дополнение до 100 (1000) числа, образованного двумя (тремя) последними цифрами этого числа):
154х9=(154-16)х10+(10-4)=138х10+6=1380+6=1386
Интересны школьникам и способы сокращенного умножения, к которым относится умножение на 15, 150, 11 и др., теоретической основой которых является умножение числа на сумму.
Например, при умножении на 15, если число нечетное, умножают его на 10 и прибавляют половину полученного произведения: 23х15=23х(10+5)=230+115=345; если же число четное, то поступаем еще проще — к числу прибавляем его половину и результат умножаем на 10:
18х15=(18+9)х10=27х10=270.
При умножении числа на 150 пользуемся тем же приемом и умножаем результат на 10, т.к.150=15х10:
24х150=((24+12)х10)х10=(36х10)х10=3600.
Теоретической основой умножения двузначных чисел является правило умножения суммы на число. Например, 18х16. Сначала число 18 представляют в виде «суммы удобных (разрядных) слагаемых», потом выполняют последовательные вычисления, используя распределительный закон умножения относительно сложения:
(10+8)х16=10х16+8х16=160+128=288.
Найти значение данного выражения устно можно проще: к одному из чисел надо прибавить количество единиц другого, эту сумму умножить на 10 и прибавить к ней произведение единиц данных чисел: 18х16=(18+6)х10+8х6= 240+48=288. Описанным способом можно умножать двузначные числа, меньшие 20, а также числа, в которых одинаковое количество десятков: 23х24 = (23+4)х20+4х6=27х20+12=540+12=562. Способ отличается от тех «рациональных вычислений», которым обучают детей в школе.
На первый взгляд данные способы вычислений кажутся сложными, но при правильной организации работы на уроке и внеклассных занятиях учащиеся осваивают их и с удовольствием используют в вычислительной деятельности. Привычка выполнять подобные вычисления устно формирует устойчивый навык, который не раз сыграет добрую службу при изучении более сложного материала.
В учебной литературе описываются и другие универсальные способы быстрого счета (рациональных вычислений), которые всегда можно обосновать математически и основываются они на известных законах и свойствах арифметических действий. Вариативность вычислительных навыков школьников формирует интерес, положительную мотивацию к вычислительной деятельности. Но на практике универсальным приемам вычислений уделяется мало внимания в силу недостаточной математической подготовки самих учителей.
Хорошо подготовленный учитель найдет возможность знакомить школьников с известными вычислительными секретами, показывать ученикам практическую значимость математики, тогда перед детьми откроется совсем другая математика — живая, полезная и понятная. Ведь уроки математики должны учить считать, должны тренировать мышление, разум, волю. И тогда наши ученики будут выглядеть перед нами способными, уверенными и культурными. Ведь своя голова надежней, чем самые современные вычислительные средства.
История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...
Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.